
www.manaraa.com

 i

Islamic University of Gaza

Deanery of Post Graduate Studies

Faculty of Information Technology

Developing Agile
Applications Using Iterative

Database Design Model

By

Emad Omar Kehail

Supervised by

Prof. Alaa Al Halees

Mar, 2016

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master in Information Technology

www.manaraa.com

 ii

Abstract

Software development are becoming more complex day after day, customer requirements

becomes more complex and changing a lot, and software development methodologies are

trying to respond to those emergent business needs and requirements.

One of the major business needs of nowadays is the ability to quickly respond to business

requirements and changes. Therefore, the software development process has been moved to

be more agile by using what has been agreed to call Agile Software Development Process. Such

agile methods, XP and Scrum for example, have been widely used lately instead of the

traditional software development methods such as Waterfall and Spiral.

However, the business still needs to store data, and Database Management Systems (DBMS)

are still the de facto for the business software. DBMS relying completely on Database Design

process that follow traditional up-front design process which is sequential by nature. The Data

Analyst needs to develop a complete Entity Relationship Diagram (ERD) which is a result of a

normalization process that generates the tables and their relationships.

This research developed a model that integrates the database design techniques with Scrum

Agile practices. The new model did not sacrifice the features of the database design

techniques, yet the model helped to make the database design process more agile by

distributing the database design process among the Scrum development process.

We evolve our new model by using Focal Point approach and then adding an Abstraction Layer

at the database level which contains business logic related to data implemented using stored

procedures and functions, and we find that this helps to reduce the impact of the changes

implemented at the database level and to achieve the goal with percentage around 64% of the

time needed to achieve the same goal using the traditional upfront design. This is in addition

to the flexibility of the new system when it comes to adapt new changes since the results

showed that the new model is around 80% more flexible than using upfront design approach.

Keywords: Agile Software Development, Database, SCRUM

www.manaraa.com

 iii

Arabic Abstract

فقد أصبحت متطلبات العميل معقدة ومتسارعة التغيير، أعقد من ذي قبل، أصبح تطوير البرمجيات والأنظمة المحوسبة

 متطلبات العمل قدر الإمكان.ولهذ تحاول طرق الحوسبة الحديثة أن تلبي

ومن أكثر احتياجات العمل في هذه الأيام هو القدرة على تلبية الطلبات والتعديلات بسرعة. لهذا، أصبحت طرق الحوسبة

الجديدة تتجه إلى أن تكون رشيقة ومرنة، وأصبحت تسمى "الطرق الرشيقة في الحوسبة" مثل "سكرم" و "إكس بي" اللتان

 من الطرق التقليدية مثل "الأسلوب اللولبي" أو "شلال المياه".تستخدمان بشكل
ً
 واسع في حوسبة الأنظمة بدلا

إضافة إلى ذلك، الأعمال التجارية بحاجة ماسة إلى تخزين البيانات، ولهذا بقيت "نظم إدارة قواعد البيانات" ش يء أساس ي

التصميم المسبق" في تطويرها، وهي طريقة تسلسلية في في حوسبة الأنظمة. "نظم إدارة قواعد البيانات" تعتمد أسلوب "

طبيعتها، حيث يقوم مصمم قواعد البيانات بتصميم مخطط قواعد البيانات، والذي هو نتيجة لعملية تطبيع الحقول إلى

 عدة جداول والعلاقات ما بين هذه الجداول.

الأسلوب الرشيق "سكرم" بطريقة تكاملية. وقد هذه الدراسة طورت نموذج دمج ما بين أسلوب تصميم قواعد البيانات و

راعى النموذج الجديد أن لا نفقد أي ميزة من ميزات تصميم قواعد البيانات، بل جعل عملية تصميم قواعد البيانات أكثر

 رشاقة من خلال توزيع هذه العملية على مراحل تطوير الأنظمة المتبعة في أسلوب "سكرم".

 إضافة "طبقة مجردة" على مستوى قاعدة قمنا بتطوير هذا النموذج
ً
من باتباع أسلوب "النقطة المحورية" وتم أيضا

البيانات. الطبقة المجردة تحتوي على الشيفرة المصدرية" التي تقوم بمنطق العمل الخاص بمعالجة البيانات وذلك

سلوب قلل من عدد التعديلات التي كانت باستخدام الإجراءات المخزنة على مستوى قواعد البيانات. وقد وجدنا أن هذا الأ

% مقارنة بتنفيذ نفس التعديل بالأسلوب القديم التسلس ي 64تجرى على قواعد البيانات بناء على متطلبات العمل بنسبة

الذي يعتمد على التصميم المسبق.هذا بالإضافة إلى المرونة التي يتميز بها هذا النموذج في قدرته على استيعاب التعديلات

% مقارنة مع الأسلوب التسلسلي الذي يعتمد على 80مرن بنسبة تصل إلى حيث أظهرت النتائج أن النموذج الجديد

 التصميم المسبق لقواعد البيانات.

 .تطوير البرمجيات الرشيق، قواعد البيانات، سكرمكلمات مفتاحية:

www.manaraa.com

 iv

www.manaraa.com

 v

Dedication

To the soul of my Parents

To my beloved wife and

children

To my family

To all friends

www.manaraa.com

 vi

Acknowledgments

All praise is for Allah, the Almighty for providing me with the strength to accomplish this thesis

and for guiding me at every stage of my life.

This thesis is the result of years of work whereby I have been accompanied and supported by

many people. It is wonderful that I now have the opportunity to express my gratitude to all of

them.

I'd like to thank everyone who has helped me in completing this work. I submit my highest

appreciation to my thesis advisor Dr. Alaa M. Alhalees, who supported me and helped me in

each step. I would like to express my deep and sincere gratitude to him. His knowledge and

personal guidance have provided a good basis for the present thesis.

I would also like to thank Eng. Mohammed Elkhoudary and Eng. Alaa Alsalehi, for their

valuable technical help and appreciated efforts.

Also, I would like to take this opportunity to express my profound gratitude to my beloved

family, especially my wife, and to my family - without whom I would never have been able to

achieve so much.

Last, but certainly not least, I offer my thanks and appreciation to all of those who supported

me in any respect during the completion of the research.

www.manaraa.com

 vii

Table of Contents

Abstract ... ii

Arabic Abstract ...iii

Dedication .. v

Acknowledgments .. vi

List of Figures .. ix

List of Tables ... x

List of Abbreviations ... xi

CHAPTER I: Introduction ... 1

1.1 Statement of the Problem .. 3

1.2 Objectives... 4

1.2.1 Main objective ... 4

1.2.2 Specific objectives ... 4

1.3 Research Scope and Limitations ... 5

1.4 Importance of the Project .. 5

1.5 Thesis Organization... 5

CHAPTER II: Background .. 7

2.1 Agile Methodology .. 7

2.1.1 Agile and traditional Software Development Lifecycle Models 7

2.1.2 Agile Software Development Models Adoption and Usage 8

2.1.3 Scrum Framework .. 13

2.1.4 Scrum default roles, events, and artifacts ... 13

2.2 Relational Database... 15

2.2.1 Relational Database Design ... 16

2.2.2 The Impedance Mismatch Problem ... 17

2.2.2.1 Process impedance mismatch ... 18

2.2.2.2 Technology impedance mismatch. ... 18

2.2.2.3 The Cultural Impedance Mismatch .. 18

2.3 Summary ... 19

CHAPTER III: Related Work .. 21

3.1 Agile usage with Database Design and Development 21

3.2 The need for an Encapsulation Layer ... 26

3.3 Database Refactoring.. 27

www.manaraa.com

 viii

CHAPTER IV: Methodology and Implementation ... 30

4.1 General Overview of the Model ... 30

4.2.1 New Model roles, events, and artifacts .. 31

4.2.2 New Model merged with typical Scrum Framework ... 33

4.2 Detailed Overview of the Model .. 34

4.3.1 Guidelines for developing Stored Database Objects .. 38

4.3 Evaluation .. 43

4.4 Evaluation Process ... 44

CHAPTER V: Results ... 47

5.1 Experiment Setup ... 47

5.1.1 About the Teams ... 47

5.1.2 OVIPs Restaurant System's User Stories and Scenarios 48

5.1.3 Environment and Tools: ... 53

5.2 Teams Results and Findings .. 53

5.2.1 Team (A) Results ... 53

5.2.2 Team (B) Results ... 54

5.2.3 Findings ... 58

5.2.3.1 Specific Results .. 58

5.2.3.2 Shared Results ... 59

5.3 Summary ... 61

CHAPTER VI: Conclusion and Future Works.. 63

6.1 Conclusion ... 63

6.2 Future Works ... 64

References .. 65

www.manaraa.com

 ix

List of Figures

FIGURE 1.1: TYPICAL WATERFALL SOFTWARE DEVELOPMENT PROCESS ... 2

FIGURE 1.2: TYPICAL AGILE SOFTWARE DEVELOPMENT PROCESS ... 3

FIGURE 2.1: DIFFERENT ASD METHODOLOGIES ... 9

FIGURE 2.2: PERCENTAGE OF USAGE OF AGILE PRACTICES .. 10

FIGURE 2.3: TEAM ATTITUDES AND MORALE FACTORS CONCERNING ASD .. 11

FIGURE 2.4: TYPICAL SCRUM PROCESS ... 15

FIGURE 2.5: EXAMPLE OF HOW TABLES ARE RELATED IN RELATIONAL DATABASE 16

FIGURE 2.6: HOW ENTITIES ARE RELATED IN ERD .. 16

FIGURE 2.7: TABLE NORMALIZATION IN RELATIONAL DATABASE .. 17

FIGURE 3.1: TACTICAL MODEL OF FOCAL ENTITY PROTOTYPING .. 25

FIGURE 3.2: TRANSFORMATION BETWEEN MODELS .. 25

FIGURE 3.3: DATABASE COUPLED WITH OTHER SYSTEMS AND DATABASES .. 28

FIGURE 4.1: THE NEW AGILE-DATABASE MODEL ... 33

FIGURE 4.2: TYPICAL CONCEPTUAL MODEL DESIGN .. 34

FIGURE 4.3: TYPICAL LOGICAL MODEL DESIGN .. 35

FIGURE 4.4: TYPICAL PHYSICAL DATABASE MODEL ... 36

FIGURE 4.5: EXAMPLE OF DATABASE STORED PROCEDURE ... 37

FIGURE 4.6: EXAMPLE OF PARAMETERS USAGE WITH STORED PROCEDURE ... 38

FIGURE 4.7: STORED PROCEDURE WITH NEW PARAMETER WITH DEFAULT VALUE....................................... 39

FIGURE 4.8: EXAMPLE OF STORED FUNCTION WITH PARAMETERS .. 40

FIGURE 4.9: DATABASE VIEW RETRIEVE DATA FROM ONE TABLE SOURCE ... 41

FIGURE 4.10: DATABASE VIEW ALTERED TO RETRIEVE DATA FROM TWO TABLES 42

FIGURE 5.1: INCREMENTAL ERD (1) FOR THE PILOT SYSTEM ... 55

FIGURE 5.2: INCREMENTAL ERD (2) FOR THE PILOT SYSTEM ... 56

FIGURE 5.3: INCREMENTAL ERD (3) FOR THE PILOT SYSTEM ... 56

FIGURE 5.4: INCREMENTAL ERD (4) FOR THE PILOT SYSTEM ... 57

FIGURE 5.5: FINAL ERD FOR TEAM (B) ... 58

www.manaraa.com

 x

List of Tables

TABLE 2.1: BENEFITS OF AGILE DEVELOPMENT METHODOLOGIES ... 12

TABLE 2.2.2: ORIGINAL ROLES, ACTIVITIES, CEREMONIES, AND ARTIFACTS OF A TYPICAL SCRUM AGILE PROCESS 14

TABLE 4.1: ROLES, ACTIVITIES, CEREMONIES, AND ARTIFACTS OF THE NEW SCRUM AGILE-DATABASE PROCESS 31

TABLE 4.2: EVALUATION CRITERIA FOR TEAM (A)... 43

TABLE 4.3: EVALUATION CRITERIA FOR TEAM (B) ... 44

TABLE 4.4: EVALUATION SESSIONS .. 45

TABLE 5.1: TEAM (A) RESULTS .. 53

TABLE 5.2: TEAM (B) RESULTS .. 54

TABLE 5.3: COMPARISON OF THE RESULTS FOR SHARED ITEMS .. 59

www.manaraa.com

 xi

List of Abbreviations

ASD Agile Software Development

BCNF Boyce Code Normal Form

BDUF Database Upfront

CORBA Common Object Request Broker Architecture

DAO Data Access Objects

DBA Database Administrator

DCOM Distributed Component Object Model

DM Data Modeling

ERD Entity Relationship Diagram

JDBC Java Database Connectivity

LOB Large Object

O/R Object Relational

OLTP Online Transaction Processing

OO Object Oriented

OOD Object Oriented Design

OOP Object Oriented Programming

RDBMS Relational Database System

SDLC Software Development Life Cycle

SQL Structured Query Language

XP Extreme Programming

www.manaraa.com

1 | P a g e

1. CHAPTER I: Introduction

Nowadays software systems are big if not even huge. They tend to be complex and

interconnected with other software and hardware systems. Also, the data related to

those systems are getting large in size and this adds more complexity to the database

design for those systems [1].

All of that, and when added to the business needs that are changing rapidly, and

customer requirements which are continuously changing as well. Then; the software

development process is getting more and more complex day after day [1] [2].

Therefore, applying traditional Software Development Lifecycle methodologies such

as waterfall to such huge systems would give us the following results [3]:

 Poor Visibility. This is because of the sequential nature of the waterfall model.

 Can’t handle changes. The customer has to wait long time in order to see beta

version of the software, and it is very hard to go back to modify the

requirements because of the high cost of the changes.

 Poor quality. The errors are discovered at late stages and only after the

software is released to testing.

 Higher risks. The software is delivered late to the market, which means other

competitors could deliver before which much more exiting features.

This is because traditional software development, especially those who are database-

dependent, are sequential in nature, figure (1.1) represents a typical waterfall

software development approach. This adds extra delaying time to the developed

software since the software developers have to wait for the data molders to design

the Conceptual Level, Entity-Relationship Diagram (ERD), and then convert it into a

physical database design. This process usually tends to generate an optimized

database structure such as the third normal form 3rd NF or Boyce Code Normal Form

BCNF [4].

www.manaraa.com

2 | P a g e

Figure 1.1: Typical Waterfall Software Development Process
[5]

That’s why in the last years the adoption of the Agile Software Development models

is rising up and adopted rapidly [2]. There is an adoption of the Agile techniques in

many software development firms, whether these firms are commercial,

governmental or academic [1].

This rapid adoption of agile practices because Agile practices promised of the

following [6]:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

And this yielded many benefits such as [6]:

 Early return on investment

 Short time to market

 Improved quality

 Enhanced client relationships

 Better team morale

Figure (2.1) represents a typical agile approach in software development.

www.manaraa.com

3 | P a g e

Figure 1.2: Typical Agile Software Development Process
[7]

That’s was for the Software Development techniques, but what about the Database

layer?

Nowadays, NoSQL databases engines are rising up rapidly, and anyone might think the

golden solution is just to start using NoSQL databases since they are dedicated to

handle large datasets. However, this is not the right way to go. It is true NoSQL

database are meant to handle large data, but RDBMS database still outperform them

when it comes to OTLP processing and data consistency [8] [9].

Therefore, there is still a need to use the relational databases for OLTP based systems

as stated by Ambler in [10] “Unfortunately, most data-oriented techniques are serial

in nature, relying on specialists performing relatively narrow tasks, such as logical data

modeling or physical data modeling. Therein lies the rub – the two groups need to

work together, but both want to do so in different manners”

Because of that, the Evolutionary Database techniques start to rise up [11] [10] to

help Software Developers and Architects to unify the concept of Agile Software

Development along with the Database Design and Modeling [12]. This will greatly help

to release working versions of the desired software very quickly without sacrificing the

concepts of the database modeling and normalization rules.

1.1 Statement of the Problem

The traditional Database Design and Modeling is an up-front design, and despite

the fact that this has been followed through many years, this way of database

design and modeling lacks the flexibility to conform to the new Agile Software

Development models.

www.manaraa.com

4 | P a g e

This is supported by Ambler in [10] “The traditional approach to data modeling

does not reflect the evolutionary approach of modern methods such as the RUP

and XP, nor does it reflect the fact that business customers are demanding new

features and changes to existing functionality at an accelerating rate. The old

ways simply aren’t sufficient any more, if they ever were”.

Moreover, today software systems are big, if not even huge. The time consumed

into designing and modeling the database is very long. This means the developers

have to wait for the data modeler to finish the Logical Design, then they have to

wait for the Database Administrator to finalize the Physical Design, then, and

after all of that, the developers can start working on the business logic and the

user interface.

1.2 Objectives

1.2.1 Main objective

The main objective of this work is to make the database design and modeling

more agile by designing a process to be followed in an Agile Software

Development Lifecycle, mainly Scrum, and merge this process with the Scrum

framework.

1.2.2 Specific objectives

 Design a process to merge the database model along with the agile practices.

 Implement a pilot project to verify the new model.

 Evaluate the effectiveness of the new model.

www.manaraa.com

5 | P a g e

1.3 Research Scope and Limitations

 This research proposes a model for Agile Database Modeling that will be

integrated into Agile Software Development practices. The research will only

concentrate on the database layer.

 The research will only focus on how to integrate and adapt Agile Database

techniques with an existing Agile Model.

 The new proposed model will be applied to a pilot software system in order to

test its applicability.

 We choose questionnaires to collect feedback from developers and to test our

model.

1.4 Importance of the Project

Up-front database design and modeling takes long time, and when the developer

starts developing the business logic and the interface, then the requirements

usually change. This will result in customer dissatisfaction.

Therefore, the database design and modeling has to move one step forward, but,

without losing any of its characteristics. The up-front design has to be abandon

and a way of an incremental design has to be considered.

This will allow agile software developers to easily embed database design in the

agile practices which in turn will help them to present their work to the client

quickly. This will help to quickly release versions of the desired product as well as

quickly fixing errors in the early stages of the software development.

1.5 Thesis Organization

This thesis is divided into five major chapters which are structured about the

objectives of the research. The thesis is organized as follows:

Chapter I: Gives a brief introduction about the thesis. It presents the statement

of the problem and the general and specific objectives.

Chapter II: Presents the background of the Agile concept and the concept of the

database design. This chapter discusses the features of Agile and how it is an

incremental model while the database in an up-front model by nature.

Chapter III: Presents the related work and current used agile methodologies.

Moreover, it presents the concept of the database design, and how the up-front

database design mismatch with the current agile methodologies. Also, this

www.manaraa.com

6 | P a g e

chapter discusses how database design could be integrated and used with agile

practices

Chapter IV: Includes the methodology used to develop the new proposed model.

It presents how to the model will be integrated with Scrum agile practices, and

furthermore, it explained and in detailed steps, how to use the model effectively.

Chapter V: Explains the experiment steps and the requirements of the proposed

software system that has been used by the working teams. In addition, it presents

the results from the working teams who developed the system, compare them,

and discuss the findings of the results.

Chapter VI: Draws the conclusion and summarize the research achievements of

the new model and the obtained results, and suggests future work.

www.manaraa.com

7 | P a g e

2. CHAPTER II: Background

This chapter will review the background of this research, the chapter also discusses
the traditional up-front database design and the usage of the Agile models in the
software industry. Also, this chapter presents how and why traditional database
design contradicts with the nature of the iterative and incremental agile practices.

2.1 Agile Methodology

2.1.1 Agile and traditional Software Development Lifecycle Models

Many software development life cycle (SDLC) exist in the market, and this

made it hard for the enterprises to choose the most suitable one of them [4].

For a very long time, Waterfall SDLC has been used to develop software

systems, followed by other SDLC such as V-Model, then finally Agile has arrived

[4].

Balaji et. al. in [4] has mentioned that there are “A number of software

development life cycle (SDLC) models have been created: waterfall, spiral, V-

Model, rapid prototyping, incremental, and synchronize and stabilize.

Waterfall model is the Sequential development model”, and therefore they

have implemented a comparative study about the advantages and drawbacks

of each of the following three SDLCs:

 Waterfall Model

 V-Model

 Agile Model

To see which one of them will be the most suitable SDLC model for an

enterprise. The result of the study has reached the following:

 If requirement changes frequently and smaller projects, deliver product in

short period time with skilled resources then we can choose “Agile model”.

 If requirement is clear, larger project then we choose “Waterfall model”

 If requirement changes, larger project, proper validation to take place in

each phase, tester to be involved in early stages of development, then we

can choose “V-Model”.”

It is clear that the study has stated that when there are requirements changes,

then it is better to go for Agile Model, and when the requirements are clear it

is good to go for traditional SDLC. However, the study did not take into

considerations that the requirements needed to be frozen, not only clear.

Freezing requirements is not an option in the rapid and evolving business.

www.manaraa.com

8 | P a g e

Therefore, Agile Model is still the most suitable Model for SDLC when the

requirements are changing frequently.

Moreover, traditional SDLC like waterfall might fit well before, but now it is

inapplicable to modern software development. This is what Ambler in [13] has

stated “Data-oriented BDUF is a viable way to build software. But it's certainly

not agile, and it certainly doesn't reflect the realities of most modern

application-development efforts. It might have worked for you 20 years ago,

although I doubt it was your best option back then either (I was naively working

like this in the 1980s, by the way), but it isn't appropriate now. It is time to

rethink your approach to data-oriented development and adopt evolutionary

techniques.”. This is because of, but not limited to, the following:

1. One size does not fit all

Data oriented modeling can’t fir well for all projects, some projects

needs other type of modeling [13].

2. It isn't just about data

It is not only data, there are processes, forms, and reports. All of this

must be considered when designing an application [13].

3. You can't think everything through at the start

It is hard, if not impossible, to know everything needed from start,

Ambler has described this in [13] as “Room Decoration” where you

need to move some parts of the furniture around till you feel it is

perfect [13].

4. It doesn't easily support change

When everything is designed up-front, and work has been split off to

more than one team; then it is hard to do changes later on [13].

2.1.2 Agile Software Development Models Adoption and Usage

On the other hand of the equation, the increase demand of software products

has impact on the rapid growth of software industry. Today, there are many

new software businesses has started and yet more to come. In spite of this,

there are a lot of software products failures and business bankruptcy stories

[1]. The failure of these software projects are because of the inappropriate

selection of a SDLC that is able to respond to business requirements and

business needs [1].

www.manaraa.com

9 | P a g e

That’s why there is a need to use Agile Models, which is an iterative

incremental approach to software development and capable of handling

business requirements changing quickly [1].

Also, Begel at. el. in [2] has conducted a survey on using Agile Software

Development (ASD) using a web-based survey at Microsoft. The survey

targeted Microsoft employees who are working in “development, testing and

management roles” [2] and also “directly involved in the production of

software.” [2].

The importance of this study is that it is the first one focuses on large scale

industry in software development company such as Microsoft. Moreover, the

study has identified the most commonly used Agile practices inside Microsoft

[2]. In this study, the employees were asked about the ASD methodology they

are using, it found that 125 out of 192 of this question’s responses indicated

they used the Scrum ASD methodology [2].

Figure (2.1) from Begel at. el. study [2] represents the ASD methodologies that

have been used by the employees in the conducted study.

Figure 2.1: Different ASD Methodologies
[2]

www.manaraa.com

10 | P a g e

Another important result of the study [2] is that it has measured what practices

of Agile processes have been adopted by the employees who were targeted.

Figure (2.2) represents these practices.

Figure 2.2: Percentage of Usage of Agile Practices
[2]

From figure (2.2) we can observe that teams who are using Agile are concerned

about things more than others. For example, we can see that there are

concerned about Coding Standards and Continuous Integration of Code at the

first place. Moreover, we can see that Small Releases and User Stories are

important to them as well. This could be because User Stories are the customer

point of view of the system and it is one of the requirements gathering tools

that help them to figure out the system. Also, the Small Releases could be of

importance to them because it helps them to engage the customer more

frequently with the development team and have them do any corrective

actions to get the system developed as how the customer expected.

Another important result of the study [2] is about the team attitudes and moral

factors, the results are depicted in figure (2.3). The result “My team’s

developers and testers collaborate more with Agile than before when adopted

www.manaraa.com

11 | P a g e

Agile methods.” scores more than 60% of Strongly agree and Agree, and scores

more than 85% if we add the Neutral results to it.

Figure 2.3: Team Attitudes and Morale Factors Concerning ASD

[2]

This result indicates that Agile, and especially Scrum since it was the most used

ASD methodology, is able to help team, with different skills (developers and

testers) to collaborate more. Therefore, it should not be a problem or

impedance to add more team members with other skills, such as Data

Modeling, to the Agile team.

Begel at. el. in [2] has expressed the above result as “Among people who

currently use Agile (left side of the graph), 89.7% like or are neutral to ASD. A

more important point is that among groups that do not use ASD, 92.8% said

they liked or were neutral to ASD, indicating that a vast majority of developers

are open to trying ASD in the future” [2].

Furthermore, and also when it comes to the ASD benefits, the most benefit

was the improved communication among the team members. Daily Scrum

meetings helps to bring team members with different skills along together and

communicate effectively [2]. It is best expressed in Begel at. el. [2] “Team

members are aware of what each of the others is working on”.

In addition, “Software functionality progress can be checked and monitored

much more frequently rather than at the end of the long milestones.” [2].

Table (2.1) summarizes the most 10 benefits of the ASD methodologies

conducted by the study [2].

www.manaraa.com

12 | P a g e

Table 2.1: Benefits of Agile Development Methodologies

[2]

On the other hand of the Begel et. al. study [2], there were some ASD problems

that could be summarized as follows:

 ASD do not work well for large teams, especially teams that are more than

30 members.

 Others say that Scrum daily meetings were not efficient for large teams

especially when it is led by weak Scrum Master.

 Agile and non-Agile members’ interaction problems; some Agile team

members say “Interaction with non-Agile teams is hard because they do not

understand that you can guarantee that all the sprint items will be

completed because the prioritization meeting involves very loose time

estimates.” [2]

 Others complains about losing the big picture because they were focusing

on the daily work “you ‘re so focused on the day to day deliverables.” [2].

Therefore, the “focus is on the today’s work” [2] more “than what the

feature team is trying to achieve.” [2].

www.manaraa.com

13 | P a g e

Despite the problems mentioned above, ASD methodologies benefits still

outweigh these problems, and some of the problems could because some

developers were rot trained well about how to use Agile processes and “Some

developers wished they had formal training to do Agile, noting that there were

few training options available to them. Many who commented on training

appeared to have the idea that if they did not do Agile perfectly then the

product or process would suffer” [2].

Much more could be because losing discipline, Agile development "is simple,

but requires a lot of discipline from the team." [2]. Usually, and because ASD

methodologies differ in nature than traditional SDLC, “Agile development often

requires change in mindset that developers may not be eager to undertake.

Several developers also note that unless there is full adoption by the team, Agile

methodologies do not work very well.” [2].

2.1.3 Scrum Framework

Scrum is an Agile framework has been used to develop software systems at

many scales of enterprises [1] [2], and as has been stated by Schwaber et. al.

in [14] “Scrum is a process framework that has been used to manage complex

product development since the early 1990s.”.

Moreover, Scrum is a framework that can incorporate processes and

techniques in which they can improve the overall Scrum framework [14]. This

is because Scrum is composed of teams, their roles, events, artifacts, and rules.

Each of these components of the Scrum framework has a special purpose [14]

and this makes the Scrum framework customizable.

2.1.4 Scrum default roles, events, and artifacts

To better understand Scrum, we have presented the original roles of a typical

Scrum Agile model, their activities, ceremonies, and the resulted artifacts in

table (2.2).

www.manaraa.com

14 | P a g e

Table 2.2.2: Original Roles, Activities, Ceremonies, and Artifacts of a typical SCRUM Agile process

Role Definitions Activities Events Artifacts

Product
Owner

- The Product Owner is
responsible for maximizing the
value of the product and the
work of the Development Team.
How this is done may vary
widely across organizations,
Scrum Teams, and individuals.

- Clearly expressing Product Backlog items;
- Ordering the items in the Product Backlog

to best achieve goals and missions;
- Optimizing the value of the work the

Development Team performs;
- Ensuring that the Product Backlog is visible,

transparent, and clear to all, and shows
what the Scrum Team will work on next;
and,

- Ensuring the Development Team
understands items in the Product Backlog
to the level needed.

- Sprint Planning
Meeting

- Sprint Review
Meeting

- Product Backlog
- Sprint Backlog

Scrum
Master

The Scrum Master is a facilitator
who is accountable for removing
the impedances to deliver the
sprint goals and deliverables.
Scrum Master is not a Team
Leader

- Ensure the Sprint is executed the way it is
intended.

- Acts as buffer in-between the team and as
the distracting influences

- Rule enforcer
- Represents Management to the project

team

- Sprint Planning
Meeting

- Spring Review
Meeting

- Daily Stand-up
Meeting

- Sprint
Retrospective
Meeting

- Burndown
charts

- Sprint Backlog

Team The team is responsible for
delivering the product.
A team is typically made up of 5-9
people with cross functional skills

- Analyze
- Develop
- Technical communication
- Document

- Spring Planning
Meeting

- Sprint Review
Meeting

Based on team’s
progress the
burndown charts
are developed by
the Scrum
Master.

www.manaraa.com

15 | P a g e

Because of the above, Scrum framework will be the best fit to this research

since we need to employ new processes and techniques in our new model,

and we need to add new team members to the typical Scrum team members.

Figure 2.4: Typical Scrum Process

[15]

2.2 Relational Database

Relational database has existed long time ago, almost four decades from now.

Through these years, relational database has gained acceptance from many

organizations and nowadays software system that worth multibillion are

dependent on relational database systems, for example, but not limited to, think

of banking systems, airports and travelling booking systems [16].

Dr. Edgar F. Codd is considered the father of the relational model, he created the

relational model because of his dissatisfaction with the database models and

database products of the time led him to begin thinking of ways to apply the

disciplines and structures of mathematics to solve the myriad problems he had

been encountering [16].

Relational database stored data in relations, that’s it, data are stored in tables,

which are composed of fields and records. Each field is of one type of information

such as Family Name in which will text data, while a record represents multiple

fields such as ID, First Name, Family Name, Birthdate, and Address. Each record

is identified by field that contains a unique value, and it is called the Primary Key

[16].

www.manaraa.com

16 | P a g e

Figure 2.5: Example of How Tables Are Related in Relational Database

[16]

Relational database isolates the logical design from the physical design, the user

does not need to know where are the tables physically stored in order to

manipulate them. Structured Query Language (SQL) is the standard language that

is used to retrieve and manipulate the data in the tables [16].

2.2.1 Relational Database Design

Relational database design considered serial in nature [10], the design process

usually involves three phases: requirements analysis, modeling, and

normalization [16]. Requirements involves meetings with stakeholders and

understanding the business being targeted, while modeling is all about

modeling the database structure using data modeling methods such as Entity

Relationship Diagrams (ERD) to visually represents the database structure.

Figure 2.6: How Entities Are Related in ERD

[16]

Finally, normalization is the mathematical process to decompose large tables

into smaller ones to avoid problems such as data redundancy and improve the

process of data manipulation [16] [17].

www.manaraa.com

17 | P a g e

Figure 2.7: Table Normalization in Relational Database

[16]

Furthermore, when designing a database, it is important to consider the

following [18]:

 implementation-independent; the design should not specify the

technology that will be used.

 application-neutral; the design must and for sure serve the software

system that is being analyzed, however, the design must not be limited

for this software only.

2.2.2 The Impedance Mismatch Problem

Object Oriented Design (OOD) and Object Oriented Programming (OOP) are

based on object design that yields classes with relationships such as

inheritance and composition. Whereas Data Modeling (DM) and database

design (Normalization) based on mathematical approach to normalize the data

and reduce redundancy and ensure that the data can be used effectively.

Such differences have been figured out by people involved in the software

development industry and has been called “Object-Relational Impedance

Mismatch” [13]. In other words, “Applications see data as properties of object

classes; relational databases see data as attributes of entities” [18], and here

lies the problem.

Object oriented (OO) applications see things in different manner than how

database engines, especially relational database, see it. A very good example

is what L. Burns has stated in [18]: “an application might contain an object class

called Invoice, which contains customer data, shipping and billing data, order

and item data, tax data, pricing data, and so on. In the database, or at least in

www.manaraa.com

18 | P a g e

the data model, these are all represented as separate entities. The reason for

this, of course, is that most of this data is used for business purposes other than

simply creating invoices. Having all of this data thrown together into a single

Invoice table in the database would make it a lot easier to write the invoicing

application, but a lot harder to use that data for anything else!”.

The above example clearly represents the problem, Object Oriented

developers encapsulate data in a class as attributes, while these attributes

usually stored in more than one database table.

However, the mismatch problem is much more than just object-relational

problem. Ambler in [13] has categorized these problems as follows in Agile

Software Development:

2.2.2.1 Process impedance mismatch

Agile Software Development (ASD) use iterative and evolutional

approach to develop software system, while many within the data

community still use serial or sequential approaches to develop

software system. Therefore, there is a need for people involved in the

data community to rethink about their approach in order to

eliminate, or at least reduce, the mismatch problem [13].

2.2.2.2 Technology impedance mismatch.

There are two different paradigms, the object-oriented paradigm is

based on software engineering concepts, while the second paradigm,

data modeling is based on mathematical principles. Since both of the

paradigms and concepts are different, then they will not work

smoothly together [10] [13].

2.2.2.3 The Cultural Impedance Mismatch

The cultural impedance mismatch problem is something resulted

from a political problem between the data community and the object

community. Both sides claim their approach is better and the other

approach as weakness points. For example, the object community

claim that relational databases unable to store objects and deal with

them, while the data community claim that object oriented design

should be derived by data models [13].

As mentioned above, the greater the mismatch the deeper the problem. This

is because there will be a need to write more code and more testing for this

code to overcome this mismatch [13].

www.manaraa.com

19 | P a g e

Therefore, the solution lies in the understanding of the of both communities’

needs and requirements, and then tackle this problem in intelligent manner

with acceptable trade-offs [13].

2.3 Summary

Developing software systems that are database dependent using Agile

methodologies are sort of complex. Many trials and experiments have been done

to reach a model that can help to make this easy.

Some of them, like Harriman et. al. in [19] did a nice experiment that clearly

proved that traditional software development lifecycles (SDLC) like waterfall are

not the best choice for software development nowadays. Moreover, the

experiment showed that a means of iterative model could be used when

designing and developing a data model.

In addition, Morien in [11] introduced the concept of the “Focal Entity”. The

“Focal Entity” is starting point that Morien has used to start designing the data

model in iterative manner using the conceptual, logical, and physical design along

with the process of these entities.

Ambler in [13] introduced the Agile Modeling concept, where the Agile-DBA need

to exist and cooperate with the rest of the development team to evolutionary

design database. He also shared L. Burns in [18] about the impedance mismatch

problem and the need of an abstraction or encapsulation layer to solve the

coupling and the impedance mismatch problem.

Database refactoring was a major concern for Ambler and Burns, they have

mentioned different ways to deal with database refactoring. Ambler in [10] [13]

has thought of database refactoring by using views and direct modifications to

the database tables and how these modifications can be reduced by a means of

encapsulation layer. On the other hand, Burns in [18] sees database refactoring

as something belong to the encapsulation layer, it is must be solved there and

the application objects should not be aware of this.

The theories mentioned above have introduced many ways to advance the

database design from the being serial and sequential in nature to be more agile

and iterative. However, none of them explained how to completely integrate the

new iterative database design with an Agile software development technique

such Scrum or XP. Therefore, in this thesis, we will design a complete model with

detailed steps that clearly explain how to integrate the database design with

www.manaraa.com

20 | P a g e

Scrum Agile technique and how to move the database design from being

sequential and serialized to be iterative and evolutional.

www.manaraa.com

21 | P a g e

3. CHAPTER III: Related Work

This chapter will discuss the related work that have been done in the field of Agile
methodology, and how it is used to build iterative database design models.
Furthermore, the chapter also discusses the database refactoring and other database
technique that have been used to make database design more agile and iterative.

3.1 Agile usage with Database Design and Development

At first glance, Agile and Database seems not to be working well together, this

has been mentioned by Ambler in [10]: “Unfortunately, most data-oriented

techniques are serial in nature, relying on specialists performing relatively narrow

tasks, such as logical data modeling or physical data modeling. Therein lies the

rub – the two groups need to work together, but both want to do so in different

manners”. That’s why there are some, despite few, research about developing

Agile Data techniques and models to solve this dilemma by trying to reach a

model that helps both parties to work together effectively [11] [12] [19].

Moreover, developers usually focused on specific needs of the data, while

Database Administrators (DBAs) and Data Architects focus on the overall data

needs of the enterprise [13]. Such differences are normal since everyone is

specialized in a certain field and this, as stated by Ambler because “Specialists

have a tendency to become too narrowly focused; they can work so hard to know

everything there is to know about a small slice of software development that they

can become oblivious of everything else” [13]. That’s why Ambler has said “We

need to find the sweet spot between these two extremes” [13].

However, Burns in [18] has another point of view when it comes to data

modeling, he believes that “designing our data around the real-world entities and

attributes of the business, we help ensure that our data always has a valid

business meaning and value, regardless of how it is used.”, and therefore

developers must be aware that data needs is beyond the scope of one

application. Data must be modeled and designed in organization to serve more

than one application and in many ways [18].

Furthermore, Burns in [18] believes that “database should also encapsulate

functionality that allows data to be safely updated (in accordance with the

appropriate business rules) and quickly accessed in a business-relevant form”.

This means that database engines are not only for storing data, but also for data

constraints, business rules as well as data management and processing.

www.manaraa.com

22 | P a g e

That’s why Amber in [13] has described the role of the Agile DBA as “Agile DBAs

apply the values, principles, and practices of AM to evolve their understanding of

both the problem domain and of the solution space. They work closely with their

teammates, creating models with them and learning new modeling techniques

from them. They will create agile models to work through complicated issues or

to communicate their work to others.” [13]. That’s it, the Agile DBA work closely

and in iterative manner to develop the system with teammates. This means there

traditional serial modeling mechanism has to be abandon.

On the way to achieve such iterative model for data modeling, Harriman et. al. in

[19] discussed how to liberate the database development with Agile practices by

implementing a test on how to develop a software system using Agile techniques

and practices while the system is completely based on Database. They wanted to

establish the database as the early foundation for our application. To this end,

senior data modeling and database design expertise was brought in. [19]. They

have completely modeled the system and the entity relationship diagram was

produced so that the breadth of the domain that was explored and captured in

these artifacts was staggering: in some areas, the data model proceeded the

actual application programming by over a year [19].

Despite this, up-front modeling- should be good and promising, however, the

actual results during the project was not at the expected level, since with our

database in place, we were free to focus on the application, making sure to hook

it up to the database as we went. As you may guess, this didn’t exactly work out

as planned. In fact, it created some major difficulties, but along the way we

learned some very valuable lessons and came to embrace ongoing database

development as a fun part of learning the domain and building the application

[19].

The up-front design of the database was not the best choice Agile developers can

use to develop their software, moreover, as carefully as the database was initially

designed, we inevitably came upon gaps. [19]. In addition, and by time, the

process has improved naturally when the developers started to do some simple

database tasks themselves. The benefits of distributed knowledge of the database

design and team empowerment [19] exceeded the expectations and the

developers started to be able to handle complex database tasks and the database

was beginning to evolve and improve [19].

Moreover, and as a result of the up-front design, an Overloaded Entities started

to appear in the database design. This was because of some entities containing a

large number of fields and these fields were very speculative, being created based

www.manaraa.com

23 | P a g e

on attempting to anticipate future needs, rather than being driven by identified

features and stories. [19].

Despite the fact that these speculative fields were not as an immediate result of

up-front design, they were originally thought to provide value by allowing future

requirements to be accommodated without necessitating schema changes. In

reality, however, the costs associated with carrying the unused fields far

outweighed the benefits. These costs manifested in several areas. This is

something related to bad design rather than as a result of using up-front design.

Database Normalization uses fields resulted from the real analysis of the system

not from speculative information.

The cost of the speculative fields become high, this was clear when a senior

developer joined the team in the middle of the project and could not figure out

the meaning of such fields. Also, during the retrospectives sessions, the

speculative fields took more time by team members to discuss them, and the

final result was to clean them up, and to accommodate only features and

requirements that were currently identified. The team refrained from speculative

data and schema design. [19].

Furthermore, the experiment that Harriman et. al. in [19] discussed two

important points; Integrity Constraints and Data Concurrency Issues.

At first, the development team deferred the implementation of the integrity

constraints into the database believing that integrity constraints will make more

difficult to build the test units, and the application code will be structured and

built in a way that data integrity will not be violated [19]. However, by time, they

did discover a few holes in our application logic that violated data integrity [19]

and this yields to a result that testing for data integrity with application unit tests

would be very expensive and unnecessary since this functionality is well-tested

by the RDBMS vendor. [19].

The Data Concurrency Issues has been left to the O/R Mapping framework used

at the experiment done by Harriman et. al. in [19]. Anyhow, the results were

encouraging and they thought that this was something we could implement at

low cost at any point in our project, so we postponed implementation in favor of

other seemingly more important business stories. It seemed the agile thing to do:

deliver business value with each iteration as prioritized by the customer [19], but

in reality, this was not the case.

After the project matured, the O/R mapping was not helpful and when they did

turn on optimistic locking, it caused the application to break at each one of these

www.manaraa.com

24 | P a g e

places. The development team finally agrees that concurrency is difficult to test

in unit tests. This is another kind of protection better left to the database [19].

A step further, Morien in [11] has talked about the concept of the Entity

Modeling, and how this could be the basis of moving the database design one

step forward towards incremental and iterative model.

Morien, and based on the Entity Modeling concept, has focused on the entity as

a starting point for an iterative modeling. However, the word entity is defined by

Morien as “it could be said that an entity is highly cohesive, and very loosely

coupled with other entities” [11]. That’s it, the entity should not be a standalone

object.

The above concept of Entity Modeling helps to setup a basis on how to

incrementally develop systems, such “understanding of Entity Modeling meant

that a system could be developed using entities, and then relationships, as the

basis of iterations” [11]. Morien has called this approach a “Focal Entity

Prototyping”, and which is mainly about to develop new systems. Maintenance

of existing systems and database refactoring are beyond the scope of Morien’s

paper.

To clarify it more, Morien in [11] has developed a “Tactical Model of Development

was developed, based on the selection of an Entity to focus upon (thus “Focal

Entity”) and to elaborate through all of the various appropriate models –

Conceptual (Entity Definition), Logical Data (Table Definition), Physical Data

(Table Construction), Process (Forms and Reports)” [11]. The model completely

depends on defining what Morien has called “Focal Entity”. The process is

illustrated in figure (2.9).

www.manaraa.com

25 | P a g e

Figure 3.1: Tactical Model of Focal Entity Prototyping

[11]

Also, Morien in [11] has explained how to move from the conceptual model up

to the process model. Figure (2.10) represents the concept of the model

transformation.

Figure 3.2: Transformation Between Models
[11]

www.manaraa.com

26 | P a g e

Morien has mentioned in [11] that the changes could happen to the current

design is a sort of adding something to it rather than altering it. If there is a need

to alter the existing model, then this is a symptom to a previously poor design!

Moreover, Morien sees that his approach could fit well with the O/R models

despite that “there is clearly a problem of transforming Class Models into

Relational Database Models; known as the Object-Relational Impedance

Mismatch there is nothing in this problem that works against database

evolution.” [11]. However, he still sees that the best is to follow his approach as

entity-based rather than class-based approach.

To link it more with Agile practices, Morien in [11] has suggested to use Scrum
Agile practices along with the Focal Entity Approach. The Scrum “sprint” will best
fit for the “Tactical Model” since it could be used to develop the sprint backlog.

3.2 The need for an Encapsulation Layer

As stated in section 2.4 The Impedance Mismatch Problem, the applications

classes and objects need to access the tables stored in the database, but those

normalized tables represent a logical view of the data and they have been

normalized to add more business values such as eliminating data redundancy and

optimize the performance. Because of such business values, there is a real need

to keep those tables normalized in the database, and this means that application

classes and objects should not access those tables directly; they have to access

them through an abstraction or encapsulation layer that exists above those

normalized tables [18].

The benefits of encapsulating the database access will be, but not limited to, the

following [13]:

 Reduce coupling with a database and thus increase its maintainability and

flexibility.

 Implements all data-related code in one place.

 Simplifies the job of application programmers.

 Enables application programmers to focus on the business problem and

DBA(s) to focus on the database.

 Gives a common place, in addition to the database itself, to implement

data-oriented business rules.

 Takes advantage of specific database and features, increasing application

performance.

www.manaraa.com

27 | P a g e

There is more than one strategy to encapsulate the database access, Amber in

[13] has mentioned them as follows:

 Brute force

In brute-force approach the business objects access data sources directly,

typically by submitting SQL. For example, in Java applications, this is done

via the Java Database Connectivity (JDBC) class library.

 Data access objects

Data Access Objects (DAOs) encapsulate the database access logic required

of business objects. The typical approach is for there to be one data access

object for each business object, for example the Customer class would

have a Customer_Data class. The Customer_Data class implements the SQL

code required to access the database.

 Persistence frameworks

A persistence framework, often referred to as a persistence layer, fully

encapsulates database access from your business objects. Instead of

writing code to implement the logic required to access the database, you

instead define meta data that represents the mappings. So, if the Customer

class maps to the T_Customer table, then part of the meta data would

represent this mapping. Meta data representing the mappings of all

business objects, as well as the associations between them, also needs to

exist. Based on this meta data, the persistence framework generates the

database access code it requires to persist the business objects.

 Services

A service is an operation offered by a computing entity that can be invoked

by other computing entities. Services are typically used to encapsulate

access to legacy functionality and data, and there is a clear preference

within the industry to build new applications following a Web-services-

based architecture to facilitate reuse via system integration. Examples of

services are Web Services, Stored Procedures, CORBA, and Distributed

Component Object Model (DCOM).

3.3 Database Refactoring

A database refactoring is a simple change to a database schema that improves

its design while retaining both its behavioral and informational semantics. [13].

However, when it comes to reality, it is not that simple as it looks like. In fact,

www.manaraa.com

28 | P a g e

database refactoring is very hard at the database level and all of this because of

the coupling problem. Coupling is the "root of all evil" when it comes to database

refactoring; the more things that your database schema is coupled to, the harder

it is to refactor [13]. It is hard, as Ambler has stated in [13] because of:

 The application source code

 Other application source code

 Data load source code

 Data extract source code

 Persistence frameworks/layers

 Your database schema

 Data migration scripts

 Test code

 Documentation

And because of this, it is very hard to refactor a database when it is compared to

code refactoring. Figure (2.8) represents the worst case scenario of database

coupling.

Figure 3.3: Database Coupled with Other Systems and Databases
[13]

www.manaraa.com

29 | P a g e

database refactoring requires a significant cultural change within your

organization. Because database refactoring is an enabling technique of the

agile data method many of the cultural issues for adopting database

refactoring are the same ones that you face adopting the agile data method in

general. These cultural issues include a serial mindset within many data

professionals, resistance to change, and political inertia.

www.manaraa.com

30 | P a g e

4. CHAPTER IV: Methodology and Implementation

This chapter discusses how the new model is developed and gives a detailed

description on how to use it effectively. The new developed model is not an alteration

to the known Agile models or any of its techniques. In fact, it is an addition to the

existing Agile models with objectives to help development team to incrementally

develop software systems that are database-dependent. Therefore, the Scrum

framework has been used to design and test the new model.

4.1 General Overview of the Model

The new proposed model has been developed to help the development team to

develop database-dependent applications using Agile techniques instead of the

traditional up-front database design techniques.

However, the model did not sacrifice any of the features of the database design

techniques such as normalization and reducing data redundancy. The model

preserves all of these features during all of the model development phases.

To understand it better, we will first shortly explain the typical Scrum framework.

In any typical Scrum framework, there are ceremonies called Scrum events. These

events are linked with the Scrum team members. Each member of the team has

a specific role with some activities to do. Also, each team member of a typical

Scrum framework will develop, or participate in developing, the Scrum Artifacts.

www.manaraa.com

31 | P a g e

4.2.1 New Model roles, events, and artifacts

On the other hand, the new developed Agile-Database model team members will work in conjunction with the typical Scrum team

members mention in table (2.2). The key players in the new model are: Data Analyst, Database Administrator, Database Developer.

Usually, there is a need for one Data Analyst and one Database Administrator. However, there could be a need for more than one

Database Developer, and this completely depends on the size of the project that is being developed.

Table (3.1) below explains the Agile-Database team members’ roles, activities, ceremonies or events they will participate into, and finally

the resulted artifacts.

Table 4.1: Roles, Activities, Ceremonies, and Artifacts of the New SCRUM Agile-Database Process

Role Definitions Activities Events Artifacts

Data Analyst - The Data Analyst is responsible
for understanding the overall
picture of the system during the
Product Backlog development and
then develop the Database
Conceptual Logical Design

- The Data Analyst will participate
in the Sprint Planning Meeting in
order to develop the Database
Logical Model Design.

- Clearly understand the overall
picture of the system;

- Participate with the Product
Owner to order the items in the
Product Backlog to best achieve
goals and missions and to ensure
items are sorted in database
coherent manner.

- Ensuring that the Database
Conceptual Model is visible,
transparent, and clear to all, and
shows what the Scrum Team will
work on next.

- Ensure the Database Logical Model
is ready and understood for the
current Sprint in action.

- Sprint Planning
Meeting

- Sprint Review
Meeting

- Conceptual
Model

- Logical Model

www.manaraa.com

32 | P a g e

Role Definitions Activities Events Artifacts

Database
Administrator

The Database Administrator is
responsible for developing the
Database Physical Model

- Clearly understand the Logical
Model developed by the Data
Analyst.

- Develop the Database Physical
Model.

- Sprint Retrospective
Meeting

- Physical Model

Database
Developer

The Database Developer(s) is
responsible for developing all the
database objects in the Abstraction
Layer.

- Develop
- Document

- Spring Planning
Meeting

- Sprint Review
Meeting

- Stored
Procedures

- Stored Functions
- Packages
- Database

Triggers
- Views

Based on team’s
progress the
burndown charts
are developed by
the Scrum Master.

www.manaraa.com

33 | P a g e

4.2.2 New Model merged with typical Scrum Framework

Figure (4.1) below explains how the new model has been merged with each of the Scrum phases mentioned above.

S
ta

n
d

a
rd

 S
C

R
U

M
 F

ra
m

e
w

o
rk

P
ro

p
o

se
d

 A
g

il
e

-D
a

ta
b

a
se

 M
o

d
e

l

Data Analyst

Data Analyst

Database

Administrator

Database Developer

Database Team do Sprint
Review along with the

SCRUM application
developers

Conceptual Model
Design

Logical Model
Design

Physical Model

Design

Abstraction Layer

The conceptual Model
Design is created for
the whole Product
Backlog

The Data Analyst
develop the Logical
Model Design for the
current Sprint only

The DBA develop the
Physical Model Design
for the current Sprint
only

Abstraction Layer (Stored
Procedures, Functions, DB
Triggers, Views, Materialized
Views…etc.)

Figure 4.1: The New Agile-Database Model

www.manaraa.com

34 | P a g e

4.2 Detailed Overview of the Model

As explained in figure (4.1), table (2.2), and table (4.1); each step in the Scrum

framework has a corresponding step in the Agile-Database model. The steps at

the Agile-Database process have to be executed in parallel with the normal Scrum

Agile development process. That’s it, it has to be merged and completely

integrated into Scrum. To explain this more, the following is a complete

description of each step:

 Step One: Conceptual Design

Usually, application development needs a preparation to establish a

general understanding of the new application goal and objectives.

Therefore, a series of meetings are needed to clearly identify the project

goal, objectives. During these meetings, The Data Analyst will start to form

a general idea about the data needs for this application.

During these meetings, a set of user stories will be developed, briefly

analyzed, and prioritized. These user stories will form the Product Backlog

of the Scrum framework. The Data Analyst must attend these meetings in

which the Product Backlog will be developed since it will help to gain

additional understanding of the business requirements. It is important that

the Data Analyst should not try to model all the user stories since many of

them might not be implemented. At this point, the focus should be on

understanding the overall project goal and objectives along with the

system boundaries. That’s it, he must focus on the business needs and how

the model will be help to achieve those business requirements. At this

point, the Data Analyst can develop and produce a general Conceptual

Model Design. Only names of the entities and their relationships are

needed at this stage of work as explained in figure (4.2).

Figure 4.2: Typical Conceptual Model Design

[7]

www.manaraa.com

35 | P a g e

During the environment setup for the project, the Data Analyst reviews

the Conceptual Model Design with the development team before actual

development starts. The idea here is not to create a comprehensive model

that won’t need to change; the idea is to agree on a model that is “good

enough” to start development with.

Now the following applies, and repeated, for each Sprint in Scrum process
used for application development:

 Step Two: Logical Design

In the Sprint Planning Meeting, the team chooses a Sprint and its user

stories (Sprint Backlog) from the Product Backlog. The Data Analyst is a

key player here and his opinion is crucial when it comes to choosing the

Sprint’s user stories. The Data Analyst has to do the best he can to

preserve the Focal Entity concept and to be sure the user stories are

coherent at the data level. The key point here is to choose user stories that

can form a logically related and coherent group of entities from the

Conceptual Model Design. These user stories, together, should look like a

small independent application as represented in figure (4.3).

At this stage, the Data Analyst will design the Logical Model. The attributes

of each entity will be defined. Also, entities primary and foreign keys are

clearly identified as well.

Figure 4.3: Typical Logical Model Design

[7]

www.manaraa.com

36 | P a g e

As each user story is being discussed, the Data Analyst will attend this

meeting with the Scrum team to investigate any business requirements

related to this user story and to reflect it to the Logical Model. The Data

Analyst will just implement what is considered enough for this user story.

However, the changes of the Logical Model could affect previous

implemented user stories, therefore, the Scrum developers must work

closely with the Database Developer to ensure they do not bypass the

Abstraction Layer implemented by the Database Developer.

 Step Three: Physical Design

Once the user stories are discussed and agreed to be within the Sprint, the

Data Analyst will have another discussion with the Database

Administrator to convert the current Logical Model to the most

appropriate Physical Model. As said in the previous step, there could be

some changes of the Physical Model as a result of changes in the Logical

Model. Therefore, the Scrum developers must not bypass the Abstraction

Layer created by the Database Developer since the code and the objects

in the Abstraction Layer will do the communication and the manipulation

of the data between the application layer and the database physical layer.

Figure 4.4: Typical Physical Database Model

[7]

 The Database Administrator will convert the Logical Model designed by

the Data Analyst to the Physical Model as represented in figure (3.4). Only

the design of the tables will be implemented at this stage. The Database

Administrator is the only authorized person to decide the physical

www.manaraa.com

37 | P a g e

implementation of the database tables (Heap Table, Index Organized

Tables, Clustered Tables…etc.).



 Step Four: Abstraction Layer Implementation

After creating the Physical Model, the Database Developer start working

on creating the Abstraction Layer. The Database Developer will code the

necessary Stored Procedures, Functions, Packages, and Database Triggers

as represented in figure (3.5). These Database Objects will be used by the

rest of the Scrum developers to interact with the Physical Model created

earlier by the Database Administrator.

Figure 4.5: Example of Database Stored Procedure
[20]

The Database Developer has to follow the guidelines in section 4.3.1 when

creating these Database Objects. The objectives of these guidelines are to make

them as flexible as possible when some changes are requested.

Furthermore, and to respond to the reporting needs of the system, the Database

Developer will be responsible for creating Database Views and Materialized Views.

These views are part of the Abstraction Layer, and their purpose is to hide the

Physical Model from being directly accessed by the Scrum developers. The real

benefits of these views will be when there is a need to merge two tables into one

table, or even when there is a need to split one table into two physical tables. The

views will make these changes hidden beneath the Abstraction Layer and there

will be no needs for any changes to be done at the application level by the Scrum

developers.

www.manaraa.com

38 | P a g e

4.3.1 Guidelines for developing Stored Database Objects

 The following are the guidelines [21] the Database Developer has to follow when

he starts developing the Database Objects in the Abstraction Layer.

o Stored Procedures: Besides following a naming standards, the Database

Developer has to consider the following when he starts coding Stored

Procedures:

 Return Values: Stored Procedures do not return values, and the

Database Developer must avoid using call by reference parameters

unless there is a real need of it. For example, there might be a real

need to use call by reference parameters when sending Large

Objects data (LOB) to the procedures, in this case, using call by

value parameter will result in deep copy of all the data inside the

LOB object which size is usually in Gigabytes.

 Parameters Default Values: This is a crucial point about how Stored

Procedures can add more flexibility to the Abstraction Layer. The

default values of the parameters will help to make the procedures

more flexible when there is a need to respond to requirements

changing. To clarify this more, let’s look at the following example

using Oracle Database notation:

Figure 4.6: Example of Parameters Usage with Stored Procedure

If this procedure is used during application development by the

Scrum developers, and after a while new requirements arise; there

a new type of employees needed to deal with. These employees

have disabilities and they need special treatment since they are

either mute or blind, and there is a need to store this piece of

information where the value ‘B’ stands for BLIND, ‘M’ stands for

www.manaraa.com

39 | P a g e

MUTED, and ‘NONE’ stands for normal employees with no

disabilities.

Using default values, and after adding the new parameter

emp_disability with a default value ‘NONE’, the new Stored

Procedure will be just like the following:

Figure 4.7: Stored Procedure with New Parameter with Default Value

The default values will allow the existing code of the Stored

Procedures to be called without any modifications. The Scrum

developers who invoked the procedure by typing

addEmployee(1234, ‘MASA’, ‘EM’, ‘1024’);

in their code do not have to change anything because of new

parameter has a default value, and this default value will be stored

using the above notation used to invoke the procedures. This will

greatly add more flexibility of the Abstraction Layer and adhere to

the Agile standards in accepting new changes.

o Stored Functions: What applies to the Stored Procedures applies to

function but with the following things to consider:

 Return Value: Stored Functions must return values However;

Functions are not allowed to use call by reference parameters by

any means. The only return value from the function must be in the

RETURN statement

 Parameters Default Values: Same as Stored Procedures mentioned

above.

www.manaraa.com

40 | P a g e

The following is an example of a typical Stored Function developed

using Oracle Database notations.

Figure 4.8: Example of Stored Function with Parameters

o Stored Packages: Some database engines, like Oracle Database, offer the

database developers to use Stored Packages which could further add more

flexibility, functionality, and performance to the software being developed.

The following features of Stored Packages have to considered when

developing the Abstraction Layer:

 Logical Container: Stored Packages are logical container for the

Stored Procedures and Functions. They offer the Database

Developer an option to gather functional-related code together.

 Encapsulation and Information Hiding: Since Stored Packages,

especially in Oracle Database, are divided into main parts; Package

Specification and Package Body. Package Specification store the

name of the procedures and functions along with their parameters

only. Whereas, the Package Body stores the code of the procedures

and functions defined in the Package Specification, and also there

could be a private procedures and functions for the package

internal use.

 Overloading: By using Stored Packages, the Database Developer

can further extend the flexibility of the Abstraction Layer by using

Overloading. Overloading allows the Database Developer to invoke

the same procedure or function name, but with different code to

execute. The Stored Package can distinguish this by differentiating

www.manaraa.com

41 | P a g e

them using the procedure or function signature (number and type

of parameters).

o Database Triggers: Most database engines have the ability to create

database triggers. However, they should not be used in any transactional

logic. The only thing Database Triggers should be used in is for value

auditing. When there is a need to audit the values changing, the best place

is to plug the code in the Abstraction Layer, and the best place in the

Abstraction Layer is the Database Triggers. The code itself could be in a

Stored Procedure, but its invocation is best to be from a Database Trigger.

o Database Views: Views, which is built into the database engines, offer a

great option of flexibility to the Abstraction Layer when the developers

want to respond to the reporting needs. It is a lot better to build the report

using an SQL SELECT statement against a VIEW rather than TABLES. To

explain more, consider, as a response to business requirements, there is a

need to split as database table called “A” into two new tables called “A”

and “C”. If the report developed using a VIEW, then there is not any need

to change the report’s SELECT statement. All the changes will be done in

the Abstraction Layer by changing the VIEW’s SELECT statement to retrieve

the data by joining the new two tables “A” and “C”.

Figure 4.9: Database View Retrieve Data from One Table Source

www.manaraa.com

42 | P a g e

Figure 4.10: Database View Altered to Retrieve Data from Two Tables

o Materialized Views: On contrast to normal database views, which do not

store data, Materialized Views store data and consume storage. Usually,

Materialized Views are used enhancing reporting performance and speed

by de-normalizing the data. However, Materialized Views are not database

tables, they are still preserve the concept of the database views but with

data storage, they retrieve their data from the underlying database tables,

and they can be refreshed whenever there are data changes in their

underlying tables.

Because of the features of the Materialized Views, they can be an

important player in the Abstraction Layer. When there is a complaint from

the software users about slow report performance, the only change will

happen in the Abstraction Layer in the database engine. The report that

was based on normal database view will be now based on a Materialized

View. What’s make it more attractive is that indexes can be used with

Materialized Views to better enhance the performance.

Adapting the concept of the Abstraction Layer explained above will greatly

help Scrum team, in cooperation with the Data Analyst, Database

Administrator, and the Database Developer, to respond to new or

changed business requirements effectively and efficiently. Moreover, they

will keep the data changes to the minimum as possible, and most of the

changes related to the data are implemented in the Abstraction Layer

inside the database engine.

www.manaraa.com

43 | P a g e

4.3 Evaluation

In order to evaluate the proposed Agile-Database Model, we prepared the following:

 Proposed Software System: A pilot system, which is a proposed restaurant

model, has been chosen for development in order to evaluate the new model.

 Development Teams: Two teams of developers have been prepared. Team (A)

will develop the proposed system using up-front database design, while team

(B) will develop the proposed system using the new Agile-Database model.

 Evaluation Criteria: Two evaluation criteria have been developed to help

measure the performance of the two teams. Table (4) will be used by team (A),

and table (5) will be used by team (B).

Table 4.2: Evaluation Criteria for Team (A)

Evaluation Item Value Description

1. Time needed to finalize the
database ERD

 Overall working hours consumed by the all
the stakeholders to develop the ERD

2. Productivity rate Number of user stories accomplished

3. Customer engagement during
the project

 From 1 to 10. 1 is rare, 10 is very engaged

Use the number of meetings held with the
customer.

4. Customer satisfaction From 1 to 10. 1 is unsatisfied, 10 is very
satisfied

5. Flexibility to adapt changes From 1 to 10. 1 is hard, 10 is very easy

6. Divergence of what actually
required compared to what
actually developed

 Number of user stories cancelled, changed,
added to the system.

7. Cost of change at the database
level

 The formula is:
1x for any change done at the Conceptual
Model
2x for any change done at the Logical Model
4x for any change done at the Physical Model
1x for any change done at code

8. Over all time needed for the
project

 Overall working hours consumed by the all
the stakeholders to develop the system

www.manaraa.com

44 | P a g e

Table 4.3: Evaluation Criteria for Team (B)

Evaluation Item Value Description

1. Understanding the new model From 1 to 10. 1 is hard, 10 is extremely
easy

2. Easiness of the new model
usage

 From 1 to 10. 1 is hard, 10 is extremely
easy

3. Productivity rate of the new
model

 Number of user stories accomplished

4. Customer engagement during
the project

 From 1 to 10. 1 is rare, 10 is very engaged

Use the number of meetings held with the
customer.

5. Customer satisfaction From 1 to 10. 1 is unsatisfied, 10 is very
satisfied

6. Flexibility to adapt changes From 1 to 10. 1 is hard, 10 is very easy

7. Divergence of what actually
required compared to what
actually developed

 Number of user stories cancelled,
changed, added to the system.

8. Cost of change at the database
level

 The formula is:
1x for any change done at the Conceptual
Model
2x for any change done at the Logical
Model
4x for any change done at the Physical
Model
1x for any change done at code
1x for any change done at the Abstraction
Layer

9. Over all time needed for the
project

 Overall working hours consumed by the
all the stakeholders to develop the
system

4.4 Evaluation Process

The evaluation process tries to measure the two teams’ performance using items

in table (4.2) and table (4.3) mentioned above. The values of the two tables will

be compared to each other to measure the overall performance and efficiency of

the new model.

Since it cost more when we do modifications at the database level when the

database is growing up, the formula in item 8 “Cost of change at the database

www.manaraa.com

45 | P a g e

level” has been built to comply with this fact. The formula considers that more

cost is needed when modifications is done at the logical layer or even the physical

layer.

To accomplish this, and right after forming the teams’ members; a number of

sessions will be held with each team individually. The sessions objectives will be

as follows:

Table 4.4: Evaluation Sessions

Session Description Team Comments

1.

Describe the new Agile-
Database model

B Only

Team (B) only will implement the
software using the new proposed model.
Team (B) should answer item No. 1 in
table (5).

2.

Describe the proposed
system to be developed

A and B

It is essential for each team to
understand the new system that will be
developed in order to produce the
Product Backlog.

3.
Review the Conceptual
Model

B Only

Team (A) is using up-front design. The
team should develop a complete
Physical Design for the whole system.

4.
Review the Sprint Logical
Model

B Only

Team (A) is using up-front design. The
team should develop a complete
Physical Design for the whole system.

5.

Review the Sprint
Physical Model

A and B

Team (A) should develop a complete
Physical Design for the whole system;
item 1 in the table (4) should be
answered here.
On the other hand, team (B) should
develop a Physical Model for the user
stories for the Sprint that is currently
being developed.

6.

Review each Sprint A and B

This is a Scrum sprint review event. The
idea is to review the answers to the
items: 2, 3, 4 ,5, 6, 7 in the evaluation
table (4) for team (A). And the items: 3,
4, 5, 6, 7, 8 in the evaluation table (5) for
team (B)

7.

Review the Final Product A and B

Final product review; team (A) should
answer item No. 8 in table (4) and team
(B) should answer items No. 2 and 9 in
table (5)

www.manaraa.com

46 | P a g e

The above sessions are required and essential by the researcher. However, other

sessions could be held upon the request of the teams who will develop the

system in order to clarify more issues and to discuss the feedback with the teams.

www.manaraa.com

47 | P a g e

5. CHAPTER V: Results

As mentioned in the Evaluations section in Chapter IV: Methodology and

Implementation, two teams were composed to develop the proposed system. Each

team has been handed the system’s user stories to start developing the system and

sessions were conducted with each team separately to ensure the understanding of

the system. This chapter explains how we test the model, review each team results in

each sprint and at the end of the evaluation process, and discuss the findings of the

results.

5.1 Experiment Setup

After forming the two teams, a set of rules have been agreed on in order to
proceed with the experiment. The following sections will explain how the
experiment has been accomplished and also discuss the findings resulted from
the work of the two teams.

5.1.1 About the Teams

Team (A) Background
The team is led by Alaa Alsalehi, Alaa loves the smell of code, writing, reading,
refactoring and fixing bugs. Alaa loves to help people who want to achieve
perfection and create helpful projects, reach success in their business. Alaa is
working in IUG as a team leader for student portal, one of the main systems that
serves more than 20,000 students. Alaa runs his own start-up -ZAKI- which is a
platform for people whom loves cooking to share their knowledge and
experience.
Alaa loves mobile development and adding value to people lives providing
solutions for their daily problems. Alaa recently focus on Android OS, he is the
leader and developer of many heterogeneous - web and mobile - projects. He has
a good experience in Google data API specially YouTube API.

Team (B) Background
The team is led by Mohammed Riyad El Khoudary who is a Computer Engineer in
Palestine, he got his B.sc and M.sc in computer engineering from the Islamic
University of Gaza. Mohammed is fascinated about software engineering and
programming, he has written enterprise software for many famous institutes and
companies here in Gaza. Mohammed is currently working as a Technical
Development Manager at ExaServe company, leading more than 20 developers
in challenging software.

www.manaraa.com

48 | P a g e

5.1.2 OVIPs Restaurant System's User Stories and Scenarios

It is an agile project after all, and therefore, the user stories are crucial for the
two teams to start developing the proposed system.
Our proposed system Only for VIPs (OVIPs) is a software system that manages
restaurant requests such as customers’ orders and table reservation. The
system has been derived from a dedicated Internet website [22] for database
models, and it has been chosen because it is simple but yet contains adequate
number of database tables that can serve the purpose of this research.

The system requirements have been expressed in the following user stories
and their scenarios:

001 Customer Registration

As a customer, I want to register in the OVIPs Restaurant Database so I can use the
restaurant system.

 Scenario #1: The customer is new and never registered before

Given a customer who has never been registered in the system, when he
enters his information as indicated by the registration form, then the customer
will receive a new username and password to logon to the system.

 Scenario #2: The customer is already registered and has a username

Given a customer who has been registered in the system, when he tries to
create a new account with the same username, then the system will display an
error message explaining that this username is already taken and offer him
either to create a new account or reset the password for this account by
sending a new one to the email associated with this account.

002 Customer Booking

As a registered customer in the OVIPs Restaurant System, I want to book a table at
a specific date and time so I can visit the restaurant the time that suites me.

 Scenario #1: Booking online

Given a customer who has been registered in the system, when he uses the
restaurant online system to book a table at a specific date and time, then the
customer will be notified if his booking is successful or not.

www.manaraa.com

49 | P a g e

 Scenario #2: Booking by Phone

Given a customer who has been registered in the system, when he calls the
restaurant to book a table at a specific date and time, then the customer will
be notified by phone and an SMS to confirm his booking is successful or not.

003 Customer Book Cancelling

As a registered customer in the OVIPs Restaurant System, I want to able to cancel
the booking I had made before so I can come back later.

 Scenario #1: Online Book Cancelling

Given a customer who has been registered in the system, when he uses the
restaurant online system to cancel a book that is not due yet, then the
customer will be notified if his book cancellation is successful or not.

 Scenario #2: Cancelling a Book by Phone

Given a customer who has been registered in the system, when he calls the
restaurant to cancel a book that is not due yet, then the customer will be
notified by phone and SMS to confirm his book cancellation is successful or
not.

004 Customer Book Changing

As a registered customer in the OVIPs Restaurant System, I want to able to change
the booking I had made before so I pick another suitable time for me.

 Scenario #1: Online Book Changing

Given a customer with who has been registered in the system, when he uses
the restaurant online system to change his booking for a table at a specific date
and time to a new date and/or time, then the customer will be notified if his
book changing is successful or not.

 Scenario #2: Changing a Book by Phone

Given a customer with who has been registered in the system, when he calls
the restaurant to change his booking for a table at a specific date and time to
a new date and/or time, then the customer will be notified by phone and SMS
to confirm his booking changing is successful or not.

www.manaraa.com

50 | P a g e

005 Customer Orders

As a registered customer in the OVIPs Restaurant System, I want to review the
available menus so I can order the food, drink, or sweets that I like more.

 Scenario #1: New Orders

Given a customer with who has been registered in the system, when he
reviews the menu and request a new order for food and/or drink, then the
customer can follow up the status of the order by the restaurant online system
and can see how much the order will take to be ready.

 Scenario #2: Changing an Order

Given a customer with who has been registered in the system, when he tried
to add, drop, or change a quantity of some items in his order, then the
customer will be able to know if his request is accepted or it was too late to
change the order.

 Scenario #3: Cancelling an Order

Given a customer with who has been registered in the system, when he tried
to cancel an order, then the customer will be able to know if his request is
accepted or it was too late to cancel the order.

006 Adding Staff Members

As a restaurant manager for the OVIPs Restaurant System, I want to add staff
members and their relative information so I can assign each of them role
description.

 Scenario #1: Adding New Staff

Given a restaurant manager with the required privileges, when he adds new
staff member to the system, then the manager will be able to assign this staff
an existing role from a list of available roles in the system.

007 Staff Member Management

As a restaurant manager for the OVIPs Restaurant System, I want to be able to
change the staff roles so I can better manage them.

 Scenario #1: Editing Existing Staff Members Roles

Given a restaurant manager with the required privileges, when he edits an
existing staff member, then the manager will be able to assign this staff

www.manaraa.com

51 | P a g e

member a new role from an existing role from a list of available roles in the
system.

 Scenario #2: Editing Existing Staff Members Information

Given a restaurant manager with the required privileges, when he edits an
existing staff member, then the manager will be able to change the member
information in the system such contact and address information.

008 Menus Management

As a restaurant manager for the OVIPs Restaurant System, I want to be able to
create new menus and manage current menus so I can better serve my customers

 Scenario #1: Creating New Menus

Given a restaurant manager or a staff member with the required privileges,
when he creates a new menu in the system, then he can add new menu items
to this menu.

 Scenario #2: Editing Existing Menus

Given a restaurant manager or a staff member with the required privileges,
when he edits an existing menu, then the manager will be able to add new
menu items, delete menu items, or move menu items from menu to menu.

 Scenario #2: Deleting an Existing Menus

Given a restaurant manager or a staff member with the required privileges,
when he deletes an existing menu, then the system will no longer display this
menu and its items will be free to be added to other menus.

009 View Orders

As a restaurant manager for the OVIPs Restaurant System, I want to be able to
view tables’ orders sorted by date or customers so I can track them in case I need
to.

 Scenario #1: Listing Orders

Given a restaurant manager or a staff member with the required privileges,
when he queries for a specific order by customer name, date, or table, then he
can see the orders’ related information such as, but not limited to, who order
it, paid or not, date and time of the order.

www.manaraa.com

52 | P a g e

010 Editing Orders

As a restaurant manager, or dedicated staff member in the OVIPs Restaurant
System, I want to be able to edit tables’ orders so I can respond to the customers’
needs.

 Scenario #1: Editing Orders

Given a restaurant manager or a staff member with the required privileges,
when he edits a specific order for a specific customer, then he can change this
order by any means such as adding more items to the order, dropping items
from the order or even cancelling list of items from this order.

 Scenario #2: Deleting Orders

Given a restaurant manager or a staff member with the required privileges,
when he deletes a specific order for a specific customer, then the customer
will no longer pay for this order, and the system will indicate that this order
was deleted by a privileged user and store that user information with this
transaction.

011 Orders Discount

As a restaurant manager for the OVIPs Restaurant System, I want to be able to
give discounts for any tables’ orders so I can better market for my restaurant.

 Scenario #1: Editing Orders

Given a restaurant manager or a staff member with the required privileges,

when he gives a specific customer a discount for a specific order, then this

discount will be directly reflected to the order balance and the customer will

be able to see this discount using the restaurant system.

www.manaraa.com

53 | P a g e

5.1.3 Environment and Tools:

The development environment for the two teams are as follows:

 Database Engine: Oracle Database 11g [23] has been used as the

underlying database engine used to develop the system. The two teams

have a remarkable experience with Oracle database, and this is

important in order to rule out any factor that could affect the

development of the system except the complexity of the business rules

that needed to be implemented.

 Modeling Tool: Oracle SQL Developer [24] has been used to model the

database and to develop the Abstraction Layer by Team (B). Oracle SQL

Developer is completely integrated with Oracle database and it

facilitate the creation of the tables, views, and stored procedures.

 Development Tool: NetBeans [25] has been used as the Java [26]

development tool. NetBeans is completely integrated with Oracle

database engine and it is one of the famous Java development tools.

5.2 Teams Results and Findings

5.2.1 Team (A) Results

The team starts developing the system using the traditional up-front database

design techniques along with Scrum agile methodology. Based on the

Evaluation Process section in Chapter III: Methodology and Implementation,

table (6) represents team (A) results:

Table 5.1: Team (A) Results

Evaluation Item Value Description

1.
Time needed to finalize the
database ERD

2
Overall working hours consumed
by the all the stakeholders to
develop the ERD

2.
Productivity rate 11

Number of user stories
accomplished

3.

Customer engagement during
the project

8

From 1 to 10. 1 is rare, 10 is very
engaged

Use the number of meetings held
with the customer.

4.
Customer satisfaction 7

From 1 to 10. 1 is unsatisfied, 10 is
very satisfied

5.
Flexibility to adapt changes 4

From 1 to 10. 1 is hard, 10 is very
easy

www.manaraa.com

54 | P a g e

6. Divergence of what actually
required compared to what
actually developed

7
Number of user stories cancelled,
changed, added to the system.

7.

Cost of change at the database
level

0 Conceptual

6 Logical

8 Physical

0 Code

0 Abstraction
Layer

The formula is:
1x for any change done at the
Conceptual Model
2x for any change done at the
Logical Model
4x for any change done at the
Physical Model
1x for any change done at code
1x for any change done at the
Abstraction Layer

8.
Over all time needed for the
project

25 hrs.
Overall working hours consumed
by the all the stakeholders to
develop the system

5.2.2 Team (B) Results

The team starts developing the system using the traditional up-front database

design techniques along with Scrum agile methodology. Based on the

Evaluation Process section in Chapter IV: Methodology and Implementation,

the following results were obtained:

Table 5.2: Team (B) Results

Evaluation Item Value Description

1.
Understanding the new model 9

From 1 to 10. 1 is hard, 10 is
extremely easy

2. Easiness of the new model
usage

8
From 1 to 10. 1 is hard, 10 is
extremely easy

3. Productivity rate of the new
model

11
Number of user stories
accomplished

4.

Customer engagement during
the project

8

From 1 to 10. 1 is rare, 10 is very
engaged

Use the number of meetings held
with the customer.

5.
Customer satisfaction 8

From 1 to 10. 1 is unsatisfied, 10 is
very satisfied

6.
Flexibility to adapt changes 8

From 1 to 10. 1 is hard, 10 is very
easy

www.manaraa.com

55 | P a g e

7. Divergence of what actually
required compared to what
actually developed

7
Number of user stories cancelled,
changed, added to the system.

8.

Cost of change at the database
level

3 Conceptual

2 Logical

1 Physical

8 Code
4 Abstraction
Layer

The formula is:
1x for any change done at the
Conceptual Model
2x for any change done at the
Logical Model
4x for any change done at the
Physical Model
1x for any change done at code
1x for any change done at the
Abstraction Layer

9.
Over all time needed for the
project

16 hrs.
Overall working hours consumed
by the all the stakeholders to
develop the system

Since team (B) followed an incremental database design, the following are the

resulted ERD for the pilot system used in this thesis.

Figure 5.1: Incremental ERD (1) for the pilot system

www.manaraa.com

56 | P a g e

Figure 5.2: Incremental ERD (2) for the pilot system

Figure 5.3: Incremental ERD (3) for the pilot system

www.manaraa.com

57 | P a g e

Figure 5.4: Incremental ERD (4) for the pilot system

www.manaraa.com

58 | P a g e

Figure 5.5: Final ERD for team (B)

5.2.3 Findings

The results from the two teams’ implementation can be categorized into two sections:

specific and shared. The specific sections discuss the points that are dedicated to the

team, while the shared section discuss the points that are in common between the

two teams and are comparable. The following are the details of each section:

5.2.3.1 Specific Results

Item (1) “Time needed to finalize the database ERD” in in table (6)

represents the specific results for team (A). The item value is the

overall time that is needed to accomplish the database ERD when the

project starts. The value is 2 working hours excluding any

modifications done later to the database ERD.

www.manaraa.com

59 | P a g e

For team (B), the items (1) “Understanding the new model” and item

(2) “Easiness of the new model usage” in table (7) are the team’s

specific items. They are bout the understanding the easiness of the

model. The values of item “Understanding the new model” is 9 while

the value if the item “Easiness of the new model usage” is 8.

It is easy to observe that team (A) has spent 2 hours of designing the

final “physical” database ERD, the 2 hours are the first version of this

ERD since the user stories have been developed yet. Despite the time

spent in modeling the database ERD is considered small, only 2 hours,

but its weight is 8% of the overall time needed to accomplish the

system. This means the customer will not be engaged in this 8% of

the system, and moreover, the customer has to wait more time

before he can see actual data entry forms and reports resulted from

the sprints. Customers love to see things they are familiar with such

as forms and reports rather than technical artifacts that does not

attract them despite its importance!

On the other hand, when it comes to team (B) specific results, we can

easily observe that team (A) did not face a problem in understanding

and adapting the new model to start working on. The item

“Understanding the new model” score is 9 out of 10, while the item

“Easiness of the new model usage” score is 8 out of 10. Team (B) has

completed the system using the new model efficiently and there

were no complaints or more technical clarification needed when the

work starts.

5.2.3.2 Shared Results

The shared points from the teams’ results are presented together in

table (8) and the scores from the two teams results are presented

there as well.

Table 5.3: Comparison of The Results for Shared Items

Evaluation Item Team (A) Scores Team (B) Scores Precedence

1. Productivity rate of the new model 11 11 Equal

2. Customer engagement during the
project

8 8 Equal

3. Customer satisfaction 7 8 Team (B)

4. Flexibility to adapt changes 4 8 Team (B)

www.manaraa.com

60 | P a g e

5. Divergence of what actually
required compared to what
actually developed

7 7 Equal

6.

Cost of change at the database
level

0 Conceptual

6 Logical

8 Physical

0 Code

0 Abstraction
Layer

3 Conceptual

2 Logical

1 Physical

8 Code

4 Abstraction
Layer

Team (B)

7. Overall time needed for the
project

25 hrs. 16 hrs. Team (B)

The results in table (8) clearly show that the results for team (B) is

better than the results obtained from team (A). They scored the same

value for the items “Productivity rate of the new model” and

“Customer engagement during the project”. This normal since both

of the teams are of adequate skills to accomplish all the user stories,

also, and since the Agile methodology is used to develop the system,

then the customer engagement is expected to exist.

The remarkable results are for the rest of the items. Team (B) scored

much better than team (A). The following are discussion of each of

the shared items scores for the two teams.

 Customer satisfaction: Team (B) has scored 8 out of 10 while

team (A) scored 7 out of 10. The difference is not high, and this is

logical since the Agile methodology consider customer

engagement is crucial in software development. Anyhow, team

(B) scored higher score than team (A) because the customer was

able to early engage in Scrum sprints because of the new Agile-

Database model. Team (B) reduced the startup time needed for

the project by delaying the creation of the physical database

model to the beginning of each Scrum sprint. Using this

technique, team (B) was able to early engage the customer in the

project.

 Flexibility to adapt changes: Team (B) has scored 8 out of 10

while team (A) has scored 4 out 10. The remarkable difference

www.manaraa.com

61 | P a g e

was because team (A) needed to do modifications to the physical

database design, which was developed up-front, and also do

some modifications to the business logic embedded inside the

developed forms. At some point of the software development,

team (A) leader state “2nd sprint was not hard 3rd sprint I felt

some inability”.

However, for team (B), the physical model was created only once

the Scrum sprint is fully discussed and completely agreed.

 Divergence of what actually required compared to what

actually developed: Both teams scored the same value, this is

because the customer is one customer for both of the teams. The

feedback from the customer was the same for both teams. This is

why this value is the same for both of them.

 Cost of change at the database level: Team (B) as done a sort

of modifications to the system and the database design during the

development. There are three changes done to the database

conceptual model; which are actually a result of two

modifications done to the database logical model and one

modification done to the database physical model.

Also, we can see that most of the modifications that team (B) has

accomplished are in the code and the Abstraction Layer.

 Overall time needed for the project: Team (B) has scored 16

hours while team (A) has scored 25 hours. This is a remarkable

difference. The same outcomes have been accomplished by team

(B) with less time. Team (B) needed 64% of the time needed by

team (A) to accomplish the same project and to reach the same

outcomes.

5.3 Summary

According the results that were obtained from the two teams who were working

on the proposed project for this thesis; it is obvious that the results for team (B),

who was using our new developed model (Agile-Database), are much better in

terms of easiness, flexibility, and time.

The new model has proved to be effective when there is a need to achieve a

flexibility and ability to respond to customer changes, and of course, without

sacrificing the quality of the developed product. In addition, our new model has

www.manaraa.com

62 | P a g e

reduced the cost of changes since the database physical model creation is divided

to the sprints, and thus, the cost of changing something to the database modeling

structure is at the conceptual level or at the logical level, and very rare at the

physical level. Furthermore, the overall time needed to finalize the work is much

less when using the new proposed model, this is a remarkable achievement for

the new model, and it resulted because the physical creation of the database

model is delayed till the Scrum sprint is discussed and agreed and because of the

use of the Abstraction Layer which separates the complexity of the adapting

changes to the database from the user interface.

In conclusion, the new model, Agile-Database, has improved the overall

experience of the Agile development for the systems that are heavily database-

dependent.

www.manaraa.com

63 | P a g e

CHAPTER VI: Conclusion and Future Works

This chapter concludes the results and the findings of the work, also, it highlights the

future work directions.

6.1 Conclusion

Agile gained respect in software development field, it has been used by many size

of organizations. Due to the nature of the Agile methodology and its practices;

Agile helped developers to more involve the customer in the software

development lifecycle, and this resulted in more customer satisfaction.

On the other hand, relational database engines are still the dominant when it

comes to the critical software systems that needed transaction consistency and

accuracy. However, the traditional up-front design practices for modeling

databases are inadequate and inconsistent with today’s Agile practices.

Our model, the Agile-Database, has integrated the Agile practices along with the

database design practices. The model did not ignore the importance of the

database modeling practices, it keeps all the good about database design, but it

distributes the modeling phases along with the Scrum phases.

The results from obtained from the team who applied the new model in

developing the proposed software showed great improvement when compared

to the results obtained from the team who used traditional database

development with Scrum. The team who used the model was able to achieve the

same results with a percentage around 64% of the time needed by the team who

used the traditional up-front design.

Moreover, the new model helped the team to be able to adapt changes with

more flexibility with a percentage around 80% when compared to the other team

whose ability to adapt the changes was only around 40% for the same software

system.

Furthermore, the new model has reduced the cost of the changes done at the

database level. This is due to the fact that the physical implementation of the

database model is deferred until the Scrum sprint is completely agreed and the

developers accept it and start working on it.

Finally, the model did not sacrifice any of the database design concepts such data

integrity and reducing data redundancy. We do hope that this model is adapted

and used with an international Agile methodology, especially Scrum, which has

been used in this research.

www.manaraa.com

64 | P a g e

6.2 Future Works

The new model has improved the database design practices and integrate it

successfully with Scrum practices. Also it helped to reduce the impact of the

database refactoring with the use of the Abstraction Layer. However, there is a

real need for future work on database refactoring practices such as:

 Reduce the impact of changing the physical model of the database.

 A need to do more testing on more large-scale systems to ensure the

results are accurate when it comes to enterprise level applications.

 Develop an algorithm that could be the basis for developing new software

that helps software architects to find the “Focal-Entity” in an automated

manner, or list candidate “Focal-Entity” to them.

 How to improve, and get benefit, from some database vendors features

that are related to database refactoring such as Oracle Edition Based,

Oracle Database Replay, and Oracle Online Redefinition.

 Use other agile techniques such as XP.

www.manaraa.com

65 | P a g e

References

[1] A. M. M. H. a. H. Abushama, "Popular Agile Approaches in Software Development: Review
and Analysis," INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND
ELECTRONIC ENGINEERING (ICCEEE), pp. 160-166, 2013.

[2] A. B. a. N. Nagappan, "Usage and Perceptions of Agile Software Development in an
Industrial Context: An Exploratory Study," First International Symposium on Empirical
Software Engineering and Measurement, pp. 255-264, 2007.

[3] J. Rasmusson, "Agile vs Waterfall," Agile In a Nutshell, 2015. [Online]. Available:
http://www.agilenutshell.com/agile_vs_waterfall. [Accessed 13 February 2016].

[4] S. a. D. M. Murugaiyan, "WATEERFALLVs V-MODEL Vs AGILE: A COMPARATIVE STUDY ON
SDLC," International Journal of Information Technology and Business Management, pp.
26-30, 2012.

[5] C. B, "What is Agile Development? An Introduction," ScreenMedia, 4 8 2014. [Online].
Available: http://www.screenmedia.co.uk/blog/2014/08/what-is-agile-development-a-
brief-introduction. [Accessed 13 February 2016].

[6] A. Sidky, A Structured Approach to Adopting Agile Practices: The Agile Adoption
Framework, Virginia: Virginia Polytechnic Institute and State Univ., 2007.

[7] 1keydata, "Data Modeling," 1keydata.com, 2001. [Online]. Available:
http://www.1keydata.com/datawarehousing/data-modeling-levels.html. [Accessed 13
February 2016].

[8] J. Han, H. E., G. Le and J. Du, "Survey on NoSQL database," in Pervasive Computing and
Applications (ICPCA), 6th International Conference on, 2011.

[9] N. Leavitt, "Will NoSQL Databases Live Up to Their Promise?," Computer, vol. 43, no. 2,
pp. 12-14, 2010.

[10] S. Ambler, "Introduction To Database Refactoring," The Data Administration Newsletter,
1 July 2006. [Online]. Available: http://tdan.com/introduction-to-database-
refactoring/5010. [Accessed 13 February 2016].

[11] R. Morien, "Agile Development of the Database: A Focal Entity Prototyping Approach,"
Proceedings of the Agile Development Conference, 2005.

[12] K. S. a. B. Goel, "Impact of Agile and TDD Implementation in Database," International
Journal of Computer Applications, vol. 22, pp. 26-29, 2011.

[13] S. Ambler, Agile Database Techniques, Wiley Publishing, 2003.

[14] K. Schwaber and J. Sutherland, "The Scrum Guide," Scrum Alliance, 24 September 2014.
[Online]. Available: https://www.scrumalliance.org/why-scrum/scrum-guide. [Accessed
13 February 2016].

[15] M. Website, "Maxxor," Maxxor, [Online]. Available: https://www.maxxor.com/software-
development-process. [Accessed 4 March 2016].

[16] M. J. Hernandez, Database Design for Mere Mortals: A Hands-on Guide to Relational
Database Design, Michigan: Addison-Wesley Professional, 2013.

[17] J. L. Harrington, Relational Database Design and Implementation, 3rd Edition, Morgan
Kaufmann, 2009.

[18] L. Burns, Building the Agile Database: How to Build a Successful Application Using Agile
Without Sacrificing Data Management, Westfield, NJ: Technics Publications, 2011.

www.manaraa.com

66 | P a g e

[19] A. Harriman, P. Hodgetts and M. Leo, "Emergent database design: liberating database
development with agile practices," in Agile Development Conference, 2004.

[20] L. Ashdown and T. Kyte, "Oracle Database Documentation - Oracle Database Concepts,"
Oracle, 2011 2011. [Online]. Available:
http://docs.oracle.com/cd/E25054_01/server.1111/e25789/srvrside.htm. [Accessed 14
February 2016].

[21] S. Feuerstein, Oracle PL/SQL Best Practices, 2nd Edition, O'Reilly Media, Inc., 2007.

[22] B. Williams, "Database Answers," 14 October 2001. [Online]. Available:
http://www.databaseanswers.org/data_models/restaurant_bookings/index.htm.
[Accessed 11 March 2016].

[23] Oracle, "Oracle Database," Oracle, 2016. [Online]. Available:
https://www.oracle.com/database/index.html. [Accessed 9 March 2016].

[24] Oracle, "Oracle SQL Developer," Oracle, 22 December 2015. [Online]. Available:
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index-
097090.html. [Accessed 9 March 2016].

[25] Oracle, "NetBeans.org," Oracle, 2016. [Online]. Available: https://netbeans.org/.
[Accessed 9 March 2016].

[26] Oracle, "Java Software," Oracle, 2016. [Online]. Available:
https://www.oracle.com/java/index.html. [Accessed 9 March 2016].

